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The concept of trajectory is extended theoretically from classical mechanics 
through nonrelativistic and relativistic quantum mechanics. Forced motion of the 
particle as might be caused by an electromagnetic field is included in the 
equations. A new interpretation of the electromagnetic potential and the gauge 
transformation is presented. Using this formal structure, the problem of collect- 
ing particles into packets using trajectories is studied for both quantum mecha- 
nics and classical mechanics. Quantum mechanical trajectories are found to be 
significantly more restricted than those allowed by classical physics. The uncer- 
tainty principle comes from the second-order nature of the field equation without 
recourse to statistical arguments. The trajectories of particles in a quantum state 
can be calculated explicitly from the wave function (also see article in Volume 
20, Number 6). 

1. I N T R O D U C T I O N  

Mechanics is the description of  the mot ion  caused by forces acting on 
matter.  A n y  fundamenta l  set of  rules of mechanics  at tempts to divide 
mat ter  into the smallest possible identifiable units. These units, called 
particles, may  have few identifying features other than a particular posit ion 
in space at a part icular time. It  is deduced that the macroscopic  forces 
which cause the mot ion  of  large particles arise f rom intrinsic forces of  the 
smallest possible individual particles. Since Newton,  mechanics has success- 
fully described the mot ion  of  large macroscopic  particles in conjunct ion 
with overall average forces. 

These classical laws of Newton,  derived empirically without  knowledge 
of  any fundamenta l  laws of  motion,  are known to fail if applied directly to 
very small systems. Quan tum mechanics  must  be applied in these cases and 
is verified by  experiment. Dur ing  the process of  adapt ing classical mecha-  
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nics laws to quantum phenomena, the concept of a particle having an 
identity depending upon a position in space and time has not been retained, 
and other functional mathematical structures have been substituted. Thus, it 
is that the possibility of defining the motion of a point particle for quantum 
mechanics has been discarded from accepted physical dogma earlier in this 
century. Nevertheless, the functional mathematical structures have been 
sufficiently successful that there is no technological need for a quantum 
point particle. 

This article reevaluates this problem from a point of view not before 
discussed adequately; namely, the fundamental mechanics of quantum point 
particles differs only in minor details from the mechanics of classical 
particles. It is expected that explanation of this point of view will set the 
context for further discussion of geometrical theories of quantum mechanics 
in a succeeding article (Galehouse, 1981). Eventually, it may be possible to 
connect the principally statistical formulation of quantum based physics 
with the rigidly geometrical theories of gravitation. 

2. BASIC STRUCTURE OF PHYSICAL LAWS, DYNAMICS, 
AND KINEMATICS 

One of the basic conceptual separations of the laws of mechanics can 
be found in the work of Issac Newton. (Newton, 1934, p. 13) The important 
part of his law of motion expressed in modern form 

F = m a  (1) 

contains two elements: dynamics, expressed more or less in the symbol F for 
force, and kinematics, contained more or less in the acceleration a. The 
mass, m, is an essential constant connecting the two different types of 
mathematical quantities. Certain other properties of this equation are im- 
portant: (1) It is of second order in one variable, the time; and (2) it is 
linear-two forces produce an acceleration which is the sum of the accelera- 
tions produced by each force alone. The forces may be externally imposed 
or may be inferred from the equation itself. This equation was developed for 
macroscopic particles, viz., cannon balls, and the nature of properties of the 
equation are the ones most appropriate for this type of problem. 

In the microscopic world, none of these properties is necessarily useful; 
First-order or even algebraic equations may be more useful. The forces are 
so strongly dependent on position that linearity of the time derivative and 
linearity of force addition are not useful. The mass is not continuously 
adjustable (such as the cannon ball) but is a constant, at least for stable 
particles, and has only certain discrete values. Microscopic electromagnetic 
interactions are treated in terms of the vector potential without reference to 
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forces. The esoteric forces are replaced by other esoteric things, and because 
the microscopic world is so far beyond the direct reach of the senses, a 
physical language has been developed which corresponds to and explains 
this mathematical structure. Lastly, even the distinction between kinematics 
and dynamics may disappear for a microscopic mechanics. This separation 
is completely dependent upon the availability of equivalent particles differ- 
ing only in mass. By experiment, the smallest particles have not been found 
to have a continuous distribution of allowed masses. Mass is discrete, much 
like energy in bound quantum systems; and no meaningful experiment to 
separate kinematics from dynamics can be performed. 

Furthermore, if the theory is to be geometrical, the mass must be a 
geometrical constant. The kinematics can only be geometrical, and so then 
must be the dynamics. Such a description, which describes the motion of 
particles as trajectories has not the need for both dynamics and kinemat- 
i c s -  they must become one entity. 

For a number of reasons, the mechanics described here is confined to 
one particle. Simplicity is necessary, especially since much of the discussion 
is relativistic. The corresponding quantum theory, to use in calculating 
trajectories, would have to be relativistic as well, and no closed form 
solutions to relativistic quantum theories are known. For clarity, in 
explanation, the ideas are given as applied to single-particle motion in some 
given external fields. 

3. H A M I L T O N - J A C O B I  F O R M A L I S M  APPLIED TO 
M I C R O P H Y S I C S  

The entire classically known Hamilton-Jacobi system is not necessary 
nor even appropriate for the single-particle problem discussed here. Only 
two quantities from the whole theory are important: (1) the action function 
S(x, y, z, t), which, once known, can be used to calculate the motion of a 
particle from any initial position (coordinates are indicated by x ~'= 
(x, y, z, t )=(x ,  t); (2) the electromagnetic potentials A t which are found 
from Maxwell's equations with given external source currents. 

(Both relativistic and nonrelativistic notations are used in this article so 
that equations will appear in normal form. The Einstein summation conven- 
tion is in effect. Distance and time are in units of cm, mass in cm -1, hence 
e - - h =  1.) 

The relativistic equation for S without external forces is 

(asf_ f_ asf_ f (2a) 
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or in relativistic notation: 

OS OS 
Ox" Ox. 
- -  - -  = m  2 ( 2 b )  

And for a particular solution of this equation, Jacobi theory predicts a 
motion according to 

d x _  1 0 S  d x ~ _  1 OS 
ds m Ox or ds m Ox ~ (3) 

in which s is an arbitrary path parameter. Equation (1) can be verified by 
differentiating (3) and using (2) to simplify: 

ds 2 m ~ ~s 2m Ox ~ Ox p 2 ~x ~ [1]=0 (4) 

The vanishing of the second derivative with respect to the path parameter is 
the relativistic equivalent of Newton's laws for no acceleration or net force. 

Equation (2) reduces to a common nonrelativistic form if S is replaced 
by 

S = S ' + m t  (5) 

and second-order terms in the derivative with respect t o t  are dropped: 

0 S  1 

0t 2m 
(6) 

This equation is useful in many nonrelativistic, low-velocity problems, but 
the additional mathematical symmetry of the relativistic version (2) is 
useful, especially for treating the essentially relativistic electromagnetic 
effects. It is for this reason that both relativistic and nonrelativistic nota- 
tions are used in this article. 

For given initial conditions of velocity and momentum, an infinite 
number of choices for S are quite possible and physically correct. It is this 
oversupply of solutions to equation (2) which causes the conceptual com- 
plexity of HJ theory and often leads one to solve problems with the 
Newtonian formula, (1). 

A few examples of action functions might be helpful. Suppose S = E t -  
px  then (2) shows that E 2 _p2 = m  2 must hold for particles of mass m and 
(3) shows that the observed velocity must be p / E .  Because (2) is a 
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first-order linear differential equation, to solve it uniquely, an initial condi- 
tion must be specified. For instance, a trajectory going through (t ' ,x ')  is 
given by 

x = ( p / E ) ( t - t ' ) + x '  (7) 

If a different initial velocity is desired, a different action function must be 
chosen, that is a different p and E. 

Another action which will be used later is 

S = ( t 2 - x  2 - y 2 - z 2 ) l / 2 m  (8) 

and has partial derivatives 

OS x" 
0_SS=ms,  ~ S _  m s '  or Ox - m  S 0x 0t - -  (9) 

For motion effected by this function and for any initial position (x', y',  z', t') 

I 
:X: 

Fig. 1. Trajectories of the two-dimensional action function S=px-Et. The energy E and 
momentum p are considered fixed for the diagram; selection of a trajectory depends on the 
initial position. 
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Fig. 2. Trajectories of the function S= (x 2 _  t2)1/2. This function also represents free-particle 
motion. 

the initial velocity as well as all subsequent velocities must point toward the 
origin. For this particular S, the initial momentum could alternatively be 
specified as the initial condition since a position can be found to correspond 
to any given initial momentum. 

A particle which is in motion in this action field is traveling with just 
the right velocity to pass through the origin at t=0 .  Because (3) is first 
order, simultaneous initial conditions for both momentum and position 
cannot be given. 

The action functions in these two examples belong to two different 
well-known classes. The first is a complete integral because the arbitrary 
parameters E and p can be adjusted to give the motion for any initial 
velocity and position. A complete integral is really a collection of action 
functions that is large enough to be able to satisfy any initial condition of 
position and momentum. 

The second function has no arbitrary constants; it is a general integral; 
only the initial position (or initial momentum) is arbitrary. This general 
integral S--(t2-x2-y2-z2)l/2m is a single function but describes a 
collection of trajectories. A complete integral would have to include more 
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functions. Such could be arranged as 

S : [ ( t - t ' ) Z - ( x - x ' ) Z - ( y - y ' ) Z - ( z - z ' ) 2 ] l / Z m  (10) 

for all (x', y', z', t') on a spacelike surface. The additional parameters are 
necessary to describe all the solutions of Newton's second-order system 
using the first-order equation (2). A general integral S contains implied 
constraints on the possible number and type of trajectory: This property is 
important to quantum mechanics because, as will be explained, a single 
wave function is analogous to a single general integral. 

Figures 1 and 2 show trajectories for different action functions includ- 
ing several different initial positions. S is physically important because it 
describes, in a simple way, a class or collection of possible motions, only 
one of which may actually be used by the particle. 

4. THE ELECTROMAGNETIC FIELD IN CLASSICAL 
PHYSICS 

By far the most important force for atomic or microscopic physics is 
the electromagnetic field. Quantum mechanics without some sort of poten- 
tial or interaction has essentially no observable consequence. The electro- 
magnetic effects are much better understood than the nuclear or subnuclear 
interactions, hence it has been chosen as early as 1918, (Weyl, 1950), to 
form a part of a geometrical theory. The electromagnetic potential, by 
convention, is symbolized by A~ and is related to the usual E and B field via 
the tensor F~ by equation (13). 

For nonzero electromagnetic field (2) and (3) must have new terms 
added and thereby become 

--eA~ )=m 2 ( t l )  

dx~_ 3S 
m dss Ox ~ eA~ (12) 

The usual Lorentz force term can be derived by differentiating equation (12) 
and using (11) analogously to the earlier derivation for force-free motion. 

Through the use of the vector potential, the equations become more 
elegant. The minimal substitution, used in many parts of physics such as 
quantum electrodynamics and superconductivity, suggests that the vector 
potential has more significance than a mathematical construct. 
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For the microscopic discussion at hand, equations (11) and (12) can be 
simplified. This must be done keeping in mind that the calculational 
quantities A" are defined in terms of the more physical source currents by 

0A~ 0A~ (13) 
F~.- Ox" 0x~ 

and 

OF ~ 
Ox" =4~rej" (14) 

These equations, as well as (11) and (12), permit a gauge transformation 

A'~=A~+ Of S , = S +  f (15) 
Ox # ' e 

whose existence indicates some incompleteness in the usual physical inter- 
pretation of the electrodynamic potential. Only the transverse part of A" is 
conventionally considered observable. 

In practice, the gauge transformation is important because it is con- 
venient for solving these equations. Equations (13) and (14) can be solved in 
any simple gauge and the remaining indeterminate part can be regenerated 
or compensated with the proper change in S. Equations (11) and (12) can 
then be solved separately using the initial conditions given for the motion. 
Suppose that subsequent to finding a particular solution of these equations, 
a gauge transformation with 

f =  - S / e  (16) 

is performed on the equations (11)-(13). The simplification is enormous 
and (11) and (12) become 

A,A  ~ =mZ/e 2 (17) 

and 

dx. _ e A.  (18) 
ds m 

which may be simplified further by substituting 

U~= - ( e / m ) A ~  (19) 



Space-Time Trajectories 795 

to give 

and 
UrUr = 1 (20) 

dxr =U~ (21) 
ds 

With these substitutions, equations (13) and (14) become 

0 ( OUr) 4 re2.r 
(22) 

In this gauge, the action function is replaced by the remaining degrees of 
freedom in the electromagnetic potential. These equations are completely 
equivalent to the earlier case because, in practice, one solves (13) and (14) to 
get a potential which does not satisfy (17). Following that, a function f is 
found which, using (15), will satisfy (17). This is equivalent to solving 
directly the first-order equation (11) for the action function. 

This last set of equations (20), (21), and (22), shows a remarkable result 
which is deeply related to the difference between classical and quantum 
physics. In simple terms, there are no ultimate constraints on what trajecto- 
ries of particles are allowed by the equations of motion. A charged particle 
can always be made to move according to the integral of any vector field, 
and the source currents to produce those trajectories can be calculated from 
the given field. Suppose the arbitrary vector field V is given. Define 

(23) 

and choose currents by equation (22). V~ and U, have the same trajectories 
in 4-space and therefore, also in 3-space. They differ only in the path 
parametrizations, which are arbitrary. 

Classical motion is limited only by the requirements of continuity and 
differentiability. One would expect to be able to control particles that obey 
these equations down to the practical limits imposed by the necessity of 
producing the source current densities Jr" The limit of the classical theories 
should be at least as small as the classical radius of the electron, the smallest 
current element. Surprisingly, from experimental results, the limit is at a 
much larger size. Quantum mechanical effects do become important and 
suggest that some modification of equations (11)-(14) is necessary. 

Physically, the gauge transformations (15) and (16) mean that the 
properties of motion usually associated with the action function are electro- 
magnetic in origin. Boundary and initial conditions are always the implied 
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result of the positions and currents of other charged particles. The initial 
position and velocity of a particle can be considered as simply the results of 
all previous electromagnetic interactions. 

5. COLLECTIONS OF TRAJECTORIES FOR CLASSICAL 
MECHANICS 

When working with functions S and A~ as physical quantities, it 
becomes important to look not at the collection of pairs of functions S and 
A~, which give a certain trajectory, but at the collection of allowed trajecto- 
ries of a certain fixed S and A w If the external fields and boundary 
conditions are given functions, it should be possible to find properties of the 
motion which do not depend on the selection of particular initial conditions. 
Certainly the selection of a single-particle trajectory can be made by 
specifying a particular point x~ on the trajectory, and a collection or 
ensemble of such trajectories can be specified by a number of such points 
with each point corresponding to one trajectory in the ensemble. Since, by 
(17), the trajectory must be timelike, it is appropriate to assume some initial 
spacelike 3-surface upon which to assign initial conditions. 

Any reasonable person would agree that until the position of a particle 
is known, it could be anywhere. Thus it is, even according to the laws of 
classical physics. Such a lack of knowledge is expressed by the choice of an 
initial ensemble distribution which is large and uniform. It is only our 
intuitive experience which gives us the belief that the initial position of 
anything could be known. For microscopic single-particle physics, the issue 
becomes whether the unknown initial position and momentum of a particle 
could become known infinitely accurately by subsequent physical experi- 
mentation. The existence of such a process might explain the intuitive 
understanding that one has for initial position. 

An operational equivalent of "finding a particle" is to bring it to an 
arbitrary point, such as the origin of the coordinate system, and to hold it 
there with an action function (such as S=mt). This holding trajectory is 
x=y=z=O for t>0. 

Suppose there is a way to do this and that somewhere within a very 
large compact region of volume V there is exactly one charged particle. The 
particle can be collected and brought to the origin in a simple way. The 
action function S is selected to be 

S =  (x  2 +y2 ..~Z2 __t 2 )1/2 m 

as in equation (8) with t initially sufficiently negative that the entire volume 
is within the past light cone centered at t=x=y=z=O. Solutions of the 
equations for this function have the required effect. At t = 0, the particle will 
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arrive exactly at the origin. The holding function S =  m t  can then be applied 
as suggested above, preserving the collected particle. The limit of the 
collection process comes only through the limits that are imposed by having 
singular transitions between different action functions. 

The discontinuity in S at t = 0 is important in destroying the possible 
different incoming momenta. Within the limits of the classical equations of 
motion the discontinuity can be smoothed so that some small positional 
uncertainty is left. Even with continuous functions, the volume that contains 
the particle can be made as small as desired while the attendant momentum 
spread is zero. The probability of finding the particle in some volume per 
unit volume is approaching the delta function. In this case, the collapse of 
the probability density to some small volume is possible for the classical 
equations of motion. The final position of the particle can be made as 
independent of the initial position as desired, and consequently the informa- 
tion contained in the initial position can be physically discarded. 

This collection procedure provides an operational sequence to set up 
initial conditions for a particle. The particle can be brought to a known 
point and later accelerated at will. The importance of this fact is that the 
classical field equations do not limit the ability to select and move particles. 

6. FROM CLASSICAL MECHANICS TO QUANTUM 
MECHANICS 

It is easy to see from the previous discussion that there is no uncer- 
tainty principle in classical mechanics as there is in quantum mechanics. It 
is possible using classical equations to start with a particle at a random 
position and reduce its uncertainty to a small size, limited only by the 
practical problems involved. Although, in the classical case, it is not possible 
to define a wave function, it is possible to form an equivalent density 
packet. One simply selects elements of the classical ensemble with some 
distribution that has a packetlike shape. Such a grouping of ensemble 
elements'can be formed physically using methods involving a sequence of 
action functions to move the particles (or ensemble elements) into place. 
The dynamics of such a packet follows the classical dynamics of a particle 
since the ensemble elements make up the packet in a direct way. A fluid 
model is appropriate. Such a classical wave packet can be formed from an 
initially uniform ensemble distribution and subsequently made to accelerate, 
decelerate, expand, and contract arbitrarily. 2 Of course, there are no inter- 
ference effects, a fact related to the absence of a wave function. Since the 

air the packet is contracted to a true delta function, then it cannot be reexpanded. This 
anomaly cannot be produced in a practical situation and is related to the idealized nature of 
this function. 
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particles are conserved, the motion can be described as a fluid of massive 
noninteracting particles. 

All of this is very neat, but it has been observed that the classical laws 
do not predict the results of experiments correctly. Significant effects occur 
which cannot be attributed to the size of the electron or other classical 
limitations. Diffraction and interference, spectral lines, incollapsability of 
matter, quantum radiation, quantization of angular momentum, and many 
other manifestations of quantum mechanics indicate that the simple theory 
presented cannot be right. Contrary to the classical theory, wave packets 
spread and particles cannot be localized. 

Some modification or addition must be made to the basic equations 
(11)-(15). A term must be added or the interpretation corrected. The 
existence of nearly singular solutions is suspect since they are not observed, 
especially in radiation problems. In any case, the form of these equations is 
not at all the same as the form found commonly in quantum mechanics. 
There is no wave function as an integrated part of the structure and no 
exact relationship with modern quantum equations. It is now to be shown 
that the modification of these equations to quantum mechanics can be 
carried out with reasonable order and without the loss of the classical 
foundation or the corresponding trajectories. 

Suppose then that some velocity field V~ exists for the particle even for 
quantum mechanical situations. Then just as in (3), (12) or (23) there exists 
a path parameter such that the trajectory can be found by integrating 
d x " / d s  = V ~. It turns out to be convenient in the quantum mechanical case 
to let V~ be unnormalized. There is no physical difference since only the 
actual 4-space trajectory is observable and the path parameter is not. 
Basically, to find the trajectories, it is important to decide what element in 
the field equations must be associated with the velocity. As will be shown 
later, (12) will suffice as the equation of the particle trajectory if the correct 
assumption is made for the complex parts of S which develop during the 
transition to quantum mechanics. From experience with diffraction and 
interference, F "~ cannot be the simple effective field of force on the particle 
since it would predict only the usual classical effects. 

Some modification of the field equations is required since the change 
must affect S directly. It turns out that whenj ~ is given, (13) can be retained 
as a definition of F~;  but then, F ~ has the usual experimental meaning 
only in the classical limit. 

The most important changes are to equation (11). A simple modifica- 
tion can be made by adding a small second-order term. One of the simplest 
such second-order gauge-invariant quantities is 

Ox" - e A "  
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Let 

aS 
p~' -- eA ~ (24) 

axu 

be the cannonical momentum so that (11) becomes 

p~p~ = m  2 (25) 

then the new term would make this equation 

P~ P a-~x~ P = m  2 (26) 

in which a is a small constant, a may be estimated by studying when the 
second term will become important with respect to the first term. Arguing 
qualitatively, if p makes a significant fractional change, d p / p - 1 ,  over a 
distance Ax then the second term will be approximately the same size as the 
first if A p ~ p ~ a / A x  or if A p A x ~ a .  This suggests a change in the character 
of the solutions when ApAx  becomes too small. 

With foresight of the uncertainty principle, it is easy to suggest that the 
magnitude of a be approximately that of Planck's constant h. In fact, a =  ih 
gives a system of equations that is equivalent to quantum mechanics. To see 
this explicitly, the substitutions S = - ih In ~p and a = ih in equation (26) gives 

i ax t~ eA~, 7 ax---7~ , -cA*' ~ = m 2 ~  (27) 

If the quantities a and S are interpreted correctly, the physical properties of 
the modified equation (26) are equivalent to the physical properties of 
equation (27), whose correctness and validity is long established. This 
algebraic transformation is little known and is hidden by the linear form of 
(27). Linearity, a long-emphasized, essential property of quantum mechan- 
ics, is important for the practical solution of even the simplest problems; 
but, nevertheless, equation (26) is physically simpler. 

With this substitution, the function S, associated with the action 
function of classical mechanics, becomes complex. S can no longer be 
considered completely classical. This transition was treated by Bohm (1951) 
by using Re is = ~  and keeping S and R real. In any case, for a situation in 
which the motion can be described classically, the S used here can always be 
chosen real while Bohm's R can always be set equal to 1. If the motion is 
quantum, then R is nonconstant or, equivalently, Im(S) is nonconstant. The 
single complex variable S, which is the form originally used by this author, 
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has been found more convenient in the geometrical discussions. Especially 
in the following article, the close physical relation of S, +, A t and the metric 
tensor allows a smaller number of labeled fields. 

This interpretation of the uncertainty principle depends both upon the 
concept of trajectory and this form of the field equation. It is the nonlinear 
term in (26) which causes a deflection in the trajectory. This constraint can 
be viewed as a constraint on the action function S or wave function q~=e is 
which limits the correlation between the possible velocities of the particle 
and a range of possible initial conditions. In this context, the uncertainty 
principle is due to the relative constraint put upon x~ and p~ by the use of a 
single constrained function to describe the motion. 

Since the quantum mechanical equivalent of the classical cannonical 
momentum is gauge invariant, the gauge transformation (15) is still allowed 
for the electromagnetic potential, but the action function S must also be 
changed during the transformation as for the classical case. For both the 
classical equation (25) and the quantum equations (26) and (27), it is 
possible to eliminate the action function (or wave function) by performing a 
gauge transformation. As discussed earlier, for the classical system, the 
result is (17), (19), and (22). For the quantum system the corresponding field 
equation is 

e2A~,A ~' + eih ~-~ A~ : m  2 (28) 

and in both cases, the electromagnetic potential would be restrained by the 
additional equation either (14) or (22). 

7. TRAJECTORIES FOR QUANTUM MECHANICAL MOTION 

Several important physical questions relate to this form of the quantum 
equations. It is surprising, at first, that a is so small; but, in reality, it is just 
that people are large for need of complexity and are made of small 
structural elements. The use of a complex parameter is contrastingly harder 
to reconcile. In this gauge, because of (13) and (14), A t must contain a 
nonzero real part when there are any external source currents. Equation (28) 
then implies that insofar as there are accelerations, A t must contain a 
nonzero imaginary part. This imaginary part, in the context of this paper, 
defies sensible physical interpretation especially with regard to the possibil- 
ity of an observable velocity vector field. Further interpretation is included 
in the succeeding article. The real part of A~ is the closest analog to the 
classical A~, while, from the mathematics, the complex numbers are forced 
by the need for a linear equation having a simple relationship to the 
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probability density. The classical A, given by the system (13), (14), and (17) 
can be interpreted as a velocity by (19) because of the simple form of (17) 
and the fact that A~ can always be selected real. 

In both of these systems of equations the question of uniqueness is 
important, and in most practical situations these equations have unique 
solutions given the appropriate boundary or initial conditions. An am- 
biguity in the solution usually indicates, as in the rest of physics, that there 
is an unanswered physical question. Details of uniqueness criteria are 
outside the scope of this paper. 

The character of equation (28) near a singularity is strongly controlled 
by the second term. The solutions used in the previous section to gather 
particles, or more properly, ensemble elements, are no longer allowed 
because of the large singularity at the origin at t=0.  This singularity is 
necessary to stop particles as they arrive at the origin in a way that is 
independent of their incoming direction. The constraint on the possible 
motions of the particles is contained in the field equation for A~ and does 
not bear on the question of the existence of trajectories derived from the 
vector potential field. This opens the possibility of a classical type of hidden 
variable theory in which the trajectories can be defined in a meaningful 
mathematical way but the particles cannot be localized or predicted because 
of the necessity of directing them with the severe constraining limit of the 
nonlinear equation (28) (Madelung, 1926). 

The collection process of the previous section is related to the proper- 
ties of spreading wave packets. There are no known closed form wave 
packet solutions to (28), and, for this reason, an understandable, physically 
straightforward discussion is easiest in the nonrelativistic limit. (See the 
related interpretation, Lamb, 1969.) 

To derive a nonrelativistic wave packet, begin again with the relativistic 
action function (8) and assume as before that a sufficient amount of time is 
allowed for the particles to come to the origin without the need for 
relativistic velocities. In this case, Ax/At<< 1, at least away from the origin, 
and a nonrelativistic approximation may be used: 

S=mt+mt(1 x2 +y2 q_z 2 t  2 ) 1/2 

m r 2 
~ mt-- -~ --i- (29) 

This approximation does not hold near t=  0, and in this range, another form 
for S must be used. 

This action function can be easily compared to a physically similar 
solution of the Schr6dinger equation. The exact quantum wave packet 
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solution can be found by taking the nonrelativistic limit of the relativistic 
equation (27), and then solving it for the appropriate boundary conditions. 
In all nonrelativistic limits, it is convenient to redefine the action in 
accordance with equation (5) so as to exclude the linear time dependence 
term in (29). A corresponding change, to a new wave function is also 
neces s ary: 

~ ' = ~ e  imt (30) 

Assuming also that V<<m and (d/dt)(lnV)<<mc/h and that the resulting 
time dependence of the wave function ~' is slow enough that the second-order 
time derivative is negligible, an approximation to (27) gives the nonrelativis- 
tic Schr~dinger equation in Cartesian coordinates: 

1 2m i ~x k eA~ ~'= --i O (31) 

The free-particle solution of this equation corresponding to an optimally 
converging wave packet is well known: 

[-- r2/4 ].(2qr) 3/4.[(Aro)2+ 1 it ] 
+ '=  exp (Aro)E+it/2m 2 mar o (32) 

This solution differs from the earlier classical solution (29) by the displace- 
ment of the singularity off of the real time axis by the small amount 
2m.(Ar0) 2 and by the slowly varying normalization term. The normaliza- 
tion factor makes the wave function the carrier of probability information 
as well as of the motion and is required by the differential equation. Note 
that even though there is no minimum width of the packet, the quantum 
mechanical problem of stopping the particle at t = 0 is not solvable because 
the solution cannot be continued to the same solution S=mt as would be 
possible for the classical field equation. The Schrt~dinger equation is not 
algebraic in the derivatives of S, and the higher-order singularities are not 
allowed to the extent that h is nonzero. In the right sort of experiment, the 
second-order term becomes important before any effects of coarseness in 
the source currents can influence the result. Because the Schr6dinger equa- 
tion for the wave function is essentially a differential equation, a first-order 
discontinuity is not allowed, and the solutions which would otherwise 
permanently reduce the width of the statistical distribution of position are 
also not allowed. This argument is related to the quantum mechanical fact 
that the matching of the derivatives of the wave function at the boundary is 
necessary for the conservation of probability current. The wave function has 
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Fig. 3. Trajectories of particles in the x - t  plane moving according to the wave function of a 
converging wave packet. This diagram is the quantum equivalent of Figure 2. 

a certain amount of extra rigidity, imparted by the differential equation. 
The calculated trajectories for the wave packet solution are drawn in Fig- 
ure 3. 

Having introduced these concepts, it is an easy matter to define the 
trajectories for an arbitrary wave function. It can be shown that these 
trajectories, if each is assigned the correct probability, give a probability 
density variation which is in accord with quantum mechanics. As men- 
tioned, the vector potential may become complex. The imaginary part 
represents some degree of freedom intrinsic to quantum mechanics and of 
open interpretation. If the particle is allowed to exist off of the real axis, the 
interpretation of probability density becomes difficult. 

The extra dimensionality that would be generated does not have a 
sensible physical interpretation, and consequently, the proper procedure 
must be to take the real part of the velocity that would be given by simply 
substituting the complex wave function directly: 

Re/ ~S U~= ~-~x ~ -eA~, ) (33) 
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The conserved current density j r  for the particles moving in the wave 
function can be found if the correct multiplier for the velocity can be found. 
This multiplier corresponds roughly to the reference density or calibration 
that must be made to measure the dependence of the probability density in 
space and time. This reference density corresponds physically to the ex- 
istence of a pure state. A single isolated particle is always coherent with 
itself; it has a single well-defined wave function, and therefore, by virtue of 
the statement that that wave function can be produced, it must have a single 
virtual source which gives it the proper single reference density, For an 
undiffracted free particle, this reference density is uniform over all space- 
time. 

Only one multiplier function is allowed for a given wave function up to 
a normalization constant. The current density must be of the form 

Jr =f(  x )U~( x ) (34) 

for some function f(x).  The correct function f (x )  is given by the condition 
for current conservation 

~xrJ r =0  (35) 

which implies that 

Ox r [ [ ( x ) V " ( x  )] =0  (36) 

The known probability density current for the relativistic equation (27) 
which satisfies (35) is usually given in the gauge having A real: 

1 ?( 
---- q~*Re( 1 0-~ In ~ -  ear ) (37) 

This shows that up to a normalization factor, the correct choice for f ( x )  is 
f(xl=qd~*. 

The conservation of probability current can be proved from the field 
equation using integration by parts in the conventional way. This integra- 
tion, in particular, fails if all coordinates are not to remain real. 

In the same nonrelativisfic limit as is appropriate for the nonrelativistic 
field equation, the current density becomes, with S'= S - m t ,  

Jo=q~4~ * 

e t J ~ = ~  ~ 0x~ gA~ ~-~ ~ + g A ~  ~* 
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These currents are well known for quantum mechanics and have been 
discussed before in the literature. 

8. THE H I D D E N  VARIABLES OF B O H M  

An earlier theory by Bohm (1951, 1952) is similar to the trajectory 
approach explained here. Many parts of those papers are instructive for 
persons interested in the possible relationship of these trajectories to the 
usual interpretation of quantum theory. Bohm's theory is nonrelativistic and 
contains a simplified form of the electromagnetic interaction. The electro- 
magnetic potential is not used as an explicit source of the velocity, and the 
various field functions are not integrated by gauge transformations. The 
overwhelming interrelation of quantum effects and the electromagnetic field 
is not in perspective. 

A wave function is not a simple thing. It must be representative of all 
interference effects from all interactions that ever occur to the particle. To 
think of a particle as always traveling in a simple well-formed wave packet 
is extremely naive. The physical association of a naive wave packet with a 
point particle leads to some difficulties when attempting to geometrize the 
quantum equation. This tight association of wave and particle prohibits 
physical integration of the wave function with the electromagnetic fields. 
Consequently, the structure becomes irreconcilably at odds with the funda- 
mental concept of geodesic. 

Once the wave function and the electromagnetic potential are gauged 
together, the uncertainty principle becomes a property of the field equations 
and is irrelevant to the existence of trajectories. The physical equivalence of 
the wave function to electromagnetic fields suggests that a wave function 
free set of equations for trajectories might be possible. See the nonquantum 
version by Feynman and Wheeler (1945). The effect of the quantum field 
equation makes it impossible to set up (or measure) a point particle with 
complete position and momentum information. Furthermore, the physics is 
complicated by the classically well-understood process whereby, during a 
two-particle interaction, the resultant momentum and position of either one 
of the particles depends on the initial momentum and position of both 
particles. The information in the variables is mixed up by the collision. 

Suppose that one is trying to discover position or momentum coordi- 
nate information about a test particle by use of probe particles. The 
momentum and position of the probe particle can only be half known; and 
after collision, because of the exchange of coordinate dependency, the 
position and momentum of the test particle will be less well known. This is 
the process of randomization by collision used by Bohm. The argument that 
such interactions of the test particle leads to randomization seems correct if 
the unknown and a priori unknowable hidden variables of the randomizing 
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probe particles really can be assumed random and not just unknown. If one 
is to discover some pattern of nonrandomness in the absolute initial 
coordinates of some finite collection of probe particles, it would be neces- 
sary to distinguish those initial coordinates from the effects of all interpos- 
ing interactions. Such a process is impossible for the electromagnetic 
particles studied here, because any finite collection of particles has inter- 
acted overwhelmingly with other particles during its existence. 

To measure a probability density and test the P = ~ + *  law requires an 
ensemble of experiments. Each experiment creates a wave function that is 
similar to a particular standard wave function characteristic of that experi- 
ment. This process of wave function preparation is essential to the opera- 
tional definition of the ensemble and therefore the probability density. For 
each particle, each step of the preparation involves an interaction with at 
least one additional particle which at best may be treated classically. A 
specific example is the attempted creation of the s t a t e  ~p=e irnt in the 
previous section. 

A classically random ensemble is random for quantum motion as well. 
No decrease in randomness of the "hidden variables" is possible when 
further constraining these particles to quantum motion. Because of the 
complex way information is exchanged in a collision and because of the 
large amount of presumed random initial data, it is not possible to exceed 
the uncertainty limits that are intrinsic to the quantum field equations. 

9. CONCLUSION 

This article is an attempt to conceptually resynthesize some of the basic 
ideas of physics that have been at issue since the discovery of quantum 
mechanics. Many of these misconceptions have, in the opinion of the 
author, impeded progress in the deep understanding of fundamental physi- 
cal processes. The conceptualization presented is simple but different from 
the many others. 

The wave function is a function of utility, used to calculate the motion 
of particles and the average properties of that motion. The wave function is 
physically and mathematically merged with the electromagnetic potentials. 
The differences between the results of quantum and classical calculations 
are due entirely to the addition of a single small term, proportional to the 
field equation. When described in the proper context, very little other 
modification is required to explain the differences between classical equa- 
tions and quantum equations of motion. 
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